Rotation Numbers of Linear Schrödinger Equations with Almost Periodic Potentials and Phase Transmissions
نویسندگان
چکیده
In this paper we study the linear Schrödinger equation with an almost periodic potential and phase transmission. Based on the extended unique ergodic theorem by Johnson and Moser, we will show for such an equation the existence of the rotation number. This extends the work of Johnson and Moser (in Commun Math Phys 84:403–438, 1982; Erratum Commun Math Phys 90:317–318, 1983) where no phase transmission is considered. The continuous dependence of rotation numbers on potentials and transmissions will be proved.
منابع مشابه
Rotation Numbers of Linear Hamiltonian Systems with Phase Transitions over Almost Periodic Lattices
This paper deals with the dynamics of linear Hamiltonian systems which have almost periodic Hamiltonians and symplectic phase transitions over almost periodic lattices. By introducing some discrete skew-product dynamical systems based on certain joint hulls of Hamiltonians and lattices, it will be proved that such a system admits a welldefined rotation number, which gives a global, topological ...
متن کاملTHE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION
This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.
متن کاملStability analysis of stratified two-phase liquid-gas flow in a horizontal pipe
This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...
متن کاملAlmost Periodic Schrödinger Operators along Interval Exchange Transformations
It is shown that Schrödinger operators, with potentials along the shift embedding of irreducible interval exchange transformations in a dense set, have pure singular continuous spectrum for Lebesgue almost all points of the interval. Such potentials are natural generalizations of the Sturmian case.
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کامل